![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgTIdZVtgiTXt5r4lC96uX_raDD3YbSGcisTRO6XVMCpr12LPOemEyJ1VG7uBTYkoyeE_IkXXmubIauakr4GZ8VJKPbg07MBHlcqAqgZTDbF3bKnPAuZNPraAPxvSxrYq36ViZZepr2PfET/s320/galaxia.jpg)
Las dos galaxias están tan cerca (menos de la distancia que hay entre la Tierra y el centro de nuestra galaxia) que pronto se fusionarán y formarán la galaxia más grande que se haya observado en ese período de la historia cósmica. El hallazgo aporta nuevos detalles sobre el nacimiento de grandes galaxias y el papel que desempeña la materia oscura en la formación de las estructuras más masivas del Universo.
“Con estas increíbles observaciones de ALMA, los astrónomos están estudiando la galaxia más masiva que se conozca en los primeros mil millones de años del Universo, en pleno proceso de formación”, celebra Dan Marrone, profesor asociado de astronomía de la Universidad de Arizona en Tucson y autor principal del artículo.
Así, los astrónomos observan estas galaxias durante un período de la historia cósmica conocida como era de la reionización, cuando la mayor parte del espacio intergaláctico estaba envuelto en una oscura niebla de gas de hidrógeno frío. A medida que se formaron más estrellas y galaxias, su energía fue ionizando el hidrógeno presente entre las galaxias y revelando el Universo que vemos hoy.
“Para nosotros, se trataba de un período en que las pequeñas galaxias se habían esforzado por consumir el medio intergaláctico neutro”, explica Marrone. “Sin embargo, el creciente volumen de datos aportados por ALMA ha permitido corregir esa teoría, y sigue resituando más lejos en el pasado el período en que aparecieron las primeras galaxias realmente masivas”.
Las galaxias estudiadas por Marrone y su equipo, conocidas colectivamente como SPT0311-58, en un principio habían sido identificadas como una única fuente por el Telescopio del Polo Sur de la Fundación Nacional de Ciencia de EE. UU. En ese entonces, las observaciones habían revelado que era un objeto muy distante y brillante en la luz infrarroja, lo cual significaba que contenía mucho polvo y probablemente estaba experimentando un brote de formación estelar. Posteriormente, las observaciones realizadas con ALMA permitieron determinar la distancia del objeto y resolver con precisión el par de galaxias en interacción.
Para realizar esa observación, ALMA se benefició del efecto de un lente gravitacional, que potenció la capacidad de observación del telescopio. Los lentes gravitacionales se forman cuando un objeto masivo, como una galaxia o un cúmulo de galaxias, se interpone y curva la luz de galaxias más distantes. Ahora bien, este fenómeno distorsiona la apariencia del objeto estudiado, por lo que requiere la aplicación de sofisticados modelos informáticos para reconstituir la imagen y verla sin distorsión.
Este proceso de deconvolución reveló detalles intrigantes de las galaxias, como el hecho de que en la más grande se están formando estrellas a razón de 2.900 masas solares por año, o que contiene cerca de 270.000 millones de veces la masa de nuestro Sol en puro gas y unos 3.000 millones de veces la masa solar en polvo. “Es una cantidad enorme de polvo, considerando lo joven que es este sistema”, comenta Justin Spilker, doctorado hace poco por la Universidad de Arizona y ahora investigador de posdoctorado de la Universidad de Texas en Austin.
Los astrónomos sostienen que el acelerado proceso de formación estelar en esta galaxia probablemente fue gatillado por un encuentro cercano con su pareja, que es un poco más pequeña, pero ya alberga cerca de 35.000 millones de masas solares en estrellas y está aumentando su tasa de formación estelar a un ritmo vertiginoso de 540 masas solares por año.
Los investigadores pudieron observar que las galaxias de esta época eran más caóticas que las que tenemos más cerca, y plantean que sus formas dispares se deben a las grandes cantidades de gas que cae sobre ellas y a sus interacciones y fusiones con sus vecinas.
No hay comentarios:
Publicar un comentario